Contextual Dueling Bandits

نویسندگان

  • Miroslav Dudík
  • Katja Hofmann
  • Robert E. Schapire
  • Aleksandrs Slivkins
  • Masrour Zoghi
چکیده

We consider the problem of learning to choose actions using contextual information when provided with limited feedback in the form of relative pairwise comparisons. We study this problem in the dueling-bandits framework of Yue et al. (2009), which we extend to incorporate context. Roughly, the learner’s goal is to find the best policy, or way of behaving, in some space of policies, although “best” is not always so clearly defined. Here, we propose a new and natural solution concept, rooted in game theory, called a von Neumann winner, a randomized policy that beats or ties every other policy. We show that this notion overcomes important limitations of existing solutions, particularly the Condorcet winner which has typically been used in the past, but which requires strong and often unrealistic assumptions. We then present three efficient algorithms for online learning in our setting, and for approximating a von Neumann winner from batch-like data. The first of these algorithms achieves particularly low regret, even when data is adversarial, although its time and space requirements are linear in the size of the policy space. The other two algorithms require time and space only logarithmic in the size of the policy space when provided access to an oracle for solving classification problems on the space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Thompson Sampling for Dueling Bandits

In this paper, we propose a Double Thompson Sampling (D-TS) algorithm for dueling bandit problems. As its name suggests, D-TS selects both the first and the second candidates according to Thompson Sampling. Specifically, D-TS maintains a posterior distribution for the preference matrix, and chooses the pair of arms for comparison according to two sets of samples independently drawn from the pos...

متن کامل

Multi-dueling Bandits with Dependent Arms

The dueling bandits problem is an online learning framework for learning from pairwise preference feedback, and is particularly wellsuited for modeling settings that elicit subjective or implicit human feedback. In this paper, we study the problem of multi-dueling bandits with dependent arms, which extends the original dueling bandits setting by simultaneously dueling multiple arms as well as m...

متن کامل

Beat the Mean Bandit

The Dueling Bandits Problem is an online learning framework in which actions are restricted to noisy comparisons between pairs of strategies (also called bandits). It models settings where absolute rewards are difficult to elicit but pairwise preferences are readily available. In this paper, we extend the Dueling Bandits Problem to a relaxed setting where preference magnitudes can violate trans...

متن کامل

Reducing Dueling Bandits to Cardinal Bandits

We present algorithms for reducing the Dueling Bandits problem to the conventional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem is an online model of learning with ordinal feedback of the form “A is preferred to B” (as opposed to cardinal feedback like “A has value 2.5”), giving it wide applicability in learning from implicit user feedback and revealed and stated prefer...

متن کامل

Generic Exploration and K-armed Voting Bandits

We study a stochastic online learning scheme with partial feedback where the utility of decisions is only observable through an estimation of the environment parameters. We propose a generic pure-exploration algorithm, able to cope with various utility functions from multi-armed bandits settings to dueling bandits. The primary application of this setting is to offer a natural generalization of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015